দৈনন্দিন জীবনে বিজ্ঞান আমাদের নিত্য সঙ্গী। সকালে ঘুম থেকে উঠা হতে শুরু করে রাতে ঘুমানো পর্যন্ত সকল কর্মকাণ্ডের সাথে মিশে আছে বিজ্ঞান বিজ্ঞান মানব জীবনকে করেছে সুন্দর ও সমৃদ্ধ, বাড়িয়ে দিয়েছে আরাম-আয়েশ এবং সুখ সাচ্ছন্দা। কিন্তু বিজ্ঞানের এই সমৃদ্ধি একদিনে সম্ভব হয়নি। প্রাচীনকাল থেকে অদ্যাবধি বিজ্ঞানীদের চিন্তা-চেতনা, তথ্য উদ্ভাবন এবং প্রয়োগ বিজ্ঞানকে সমৃদ্ধ করেছে। মানব সম্পদ, চিকিৎসা বিজ্ঞান, কৃষি বিজ্ঞান, সাহিত্য-সংস্কৃতি, সমাজবিজ্ঞান, জ্যোতির্বিজ্ঞানসহ রসায়ন, গণিত এবং জীববিজ্ঞান এমন কি জীবন দর্শনের ক্ষেত্রেও অবদান রেখেছে বিজ্ঞান। দৈনন্দিন জীবনের প্রতিটি কাজের সাথে পরিমাপ বিষয়টি জড়িত। পদার্থবিজ্ঞানের প্রায় সকল পরীক্ষণেই বিভিন্ন রাশির পরিমাপ করতে হয়। ভৌত জগতের প্রকৃতি, বর্তমান সভ্যতায় পদার্থবিজ্ঞানের অবদান এবং পরিসর, বিস্ময়কর আবিষ্কার, বিভিন্ন বিজ্ঞানের সাথে পদার্থবিজ্ঞানের সম্পর্ক, পরিমাপের নির্ভুলতা দূর করে সঠিকতা যাচাই, বিভিন্ন মৌলিক এককের মধ্যে সম্পর্ক ও বিজ্ঞানীদের অবদানসহ নানা বিষয়ে বিজ্ঞানের প্রয়োগই হলো এ অধ্যায়ের মূল বিষয়।
▪️ভৌত জগতের প্রকৃতি ব্যাখ্যা করতে পারবে।
▪️পদার্থবিজ্ঞানের পরিসর এবং এর উদ্দীপক অবদান ব্যাখ্যা করতে পারবে।
▪️পদার্থবিজ্ঞানের ব্যবহৃত বিভিন্ন ধারণা, সূত্র, নীতি, স্বীকার্য, অনুকল্প এবং তত্ত্বের অর্থ উপলব্ধি ও ব্যাখ্যা করতে পারবে।
▪️ পদার্থবিজ্ঞানের সাথে বিজ্ঞানের বিভিন্ন শাখার সম্পর্ক বিশ্লেষণ করতে পারবে।
▪️স্থান, সময়, ভর এবং অন্যান্য প্রতিভাসের কার্যকরণ সম্পর্ক ব্যাখ্যা করতে পারবে।
▪️মৌলিক ও লক্ষ এককের মধ্যে সম্পর্ক স্থাপন করতে পারবে।
▪️পরিমাপের মূলনীতি ব্যাখ্যা করতে পারবে।
▪️পর্যবেক্ষণ ও পরীক্ষণের ক্রমবিকাশ ও গুরুত্ব ব্যাখ্যা করতে পারবে।
▪️পরিমাপের ত্রুটি ব্যাখ্যা করতে পারবে।
▪️ পরিমাপযোগ্য রাশির শুদ্ধতর মান নির্ধারণের কৌশল প্রয়োগ করতে পারবে।
স্ফেরোমিটারের সাহায্যে গোলীয় তলের বক্রতার ব্যাসার্ধ নির্ণয় করতে পারবে।
নিক্তির সাহায্যে দোলন পদ্ধতিতে বস্তুর ভর নির্ণয় করতে পারবে।
স্ফেরোমিটারের সাহায্যে একটি উত্তল লেন্সের উচ্চতা পরিমাপ করে গড় উচ্চতা 7.32 cm এবং একটি সমতল কাচ প্লেটের গড় উচ্চতা 0.2 cm পাওয়া গেল। স্ফেরোমিটারের তিন পায়ের মধ্যবর্তী দূরত্ব যথাক্রমে 5.4 cm, 5.3 cm এবং 5.2 cm.
আমরা যেখানে আছি, যে কারণে আছি, যা পঞ্চইন্দ্রিয় দ্বারা অনুভব করছি বা আমাদের অনুভূতি বহির্ভূত যা কিছু অস্তিত্বশীল (ভর ও শক্তি) রয়েছে তাই জগৎ। জগতের এই ধারণা আমাদের ভৌত জগৎকে বুঝতে সাহায্য করবে। যে কোনো বিষয় সম্পর্কে ধারণা স্পষ্ট হবার অর্থ তার অস্তিত্ব, আর অস্তিত্বের কারণ সম্পর্কে ধারণা দেয় সেই জিনিসের ধর্ম বা বৈশিষ্ট্য।
জগতের শ্রেণিবিভাগ দুটি—একটি ভৌত জগৎ আর একটি জীব জগৎ। যার জীবন নেই, তা নিয়ে যে জগৎ তার নাম ভৌত জগৎ বা জড় জগৎ, যেমন ইট, পাথর, লোহা, সোনা, মাটি ইত্যাদি নিয়ে যে জগৎ তা হলো ভৌত জগৎ। আর জীবিত বস্তু নিয়ে যে জগৎ তা হলো জীব জগৎ, যেমন মানুষ, গরু, ছাগল, গাছ-পালা ইত্যাদি নিয়ে জীব জগৎ।
আর এসব ভৌত অংশ নিশ্চয়ই ভৌত জগৎ। ভৌত জগৎ মূলত চারটি উপাদানের সমন্বয়ে তৈরি। সেগুলে হলো : (১) স্থান, (২) কাল (সময়), (৩) ভর এবং (৪) শক্তি।
প্রথম দুটি তাত্ত্বিক হওয়ায় ভৌত জগতকে ভর ও শক্তির উপস্থিতি দ্বারাই বুঝান হয় (আইনস্টাইনের বিখ্যাত সূত্র E = mc2)। এক্ষেত্রে ভর ও শক্তি একই সূত্রে গাঁথা। ভৌত জগৎকে তিন উপাদানের সমন্বয় বলে প্রচার করা হয় অর্থাৎ ভর ও শক্তিকে আলাদা দুটি উপাদানে না রেখে একত্রে শক্তি লেখা হয়। ভৌত জগৎ বিশাল ও বৈচিত্র্যপূর্ণ। বিষয়টি নিয়ে গবেষণা করতে গিয়েই মানুষ তা উপলব্ধি করেছে। তাইতো বৈজ্ঞানিক সূত্রগুলোকে চিরন্তন সত্য বলা যায় না। কারণ বর্তমান বৈজ্ঞানিক সূত্র কোনো ভৌত বিষয়কে ব্যাখ্যা করতে না পারলে নতুন সূত্র দাঁড় করাতে হয়। উদাহরণস্বরূপ গ্যালিলিও রূপান্তরকে পরিবর্তন করে লরেঞ্জ রূপান্তরে পরিণত করতে হয়েছে। ভৌত জগতের বৈচিত্র্য উপলব্ধি করার দুটি সুন্দর উপায় রয়েছে। এক ভৌত জগতকে ক্ষুদ্রতর হতে ক্ষুদ্রতরভাবে দেখা, দুই ভৌত জগতকে বৃহত্তর হতে বৃহত্তরভাবে দেখা। ক্ষুদ্রতরভাবে লেখার অর্থ হলো- কোনো বস্তুকে ভেঙ্গে পেলাম অণু, অণুকে ভেঙ্গে পেলাম পরমাণু। আবার পরমাণুকে ভেঙ্গে পেলাম স্থায়ী ও অস্থায়ী কণিকা, কণিকাকে ভেঙ্গে কোয়ার্ক, কোয়ার্ককে ভেঙ্গে শক্তিগুচ্ছ আরও কত কী। শুধু তাই নয়, এর প্রত্যেকটি অংশের আবার বহু শ্রেণি রয়েছে। বৃহত্তর দিক হতে ভাগ বলতে বোঝায় উপগ্রহ, গ্রহ, সৌর জগতের মতো জগৎ ছায়াপথ, আরও বৃহত্তর কত কী। ভৌত জগতে আরও রয়েছে ব্ল্যাকহোল যা হতে আলোক পর্যন্ত বের হয়ে আসতে পারে না। অনুমান করা হয় এক বৃহৎ ব্ল্যাকহোলকে কেন্দ্র করে বৃহৎ ছায়াপথগুলো ঘুরছে। ভৌত জগতের নানা বিষয়ের বিশেষ জ্ঞানের আলোচনাই ভৌত বিজ্ঞান।
আজ আমরা যে আধুনিক জীবন যাপন করছি তা ভৌত বিজ্ঞানেরই অবদান। জীববিজ্ঞানের অগ্রগতিরও দাবিদার ভৌত বিজ্ঞান। ভৌত বিজ্ঞানের অনেক শাখার মধ্যে পদার্থবিজ্ঞান, রসায়ন শাস্ত্র, গণিত শাস্ত্র, জ্যোতির্বিদ্যা, ভূবিদ্যা প্রভৃতি অন্যতম। এসব বিজ্ঞানের মাধ্যমে মানুষ ভৌত জগৎকে বোঝার চেষ্টা চালিয়ে যাচ্ছে। তবে মজার বিষয় হচ্ছে সমগ্র ভৌত জগতের সকল পদার্থের মধ্যে মানুষ জানতে পেরেছে মাত্র 4% । উপরন্তু কপারনিকাস, গ্যালিলিও, রবার্ট বয়েল, স্যার আইজ্যাক নিউটন, ফ্রাংকলিন, জেমস্ ওয়াট, গ্যালভানী, ভোল্টা, ফ্যারাডে, অ্যাম্পিয়ার, ও'ম, মার্কনি, আচার্য জগদীশ চন্দ্র বসু, ওয়েরস্টেড, রনজেন, ডি-ব্রগলী, হাইজেনবার্গ, রাদারফোর্ড, হেনরী বেকেরেল, কুরী, মাদাম কুরী, মিলিক্যান, চ্যাডউইক, গ্লাশো ওয়েইনবার্গ, আব্দুস সালাম প্রমুখ যশস্বী বিজ্ঞানীদের অবদান ভৌত বিজ্ঞানের অমূল্য সম্পদ। সংক্ষেপে বলা যায় - বিশ্ব ব্রহ্মাণ্ডের জীব সম্পদ ছাড়া সব কিছুই ভৌত বিজ্ঞানের দুর্ভেদ্য ভিত।
আমাদের উচিত ভৌত জগৎ নিয়ে গবেষণা করে আমাদের কৌতূহল মিটানো, ভৌত জগৎকে কল্যাণার্থে ব্যবহার করা এবং ভৌত জগতের সাথে সাথে জীব জগতের অস্তিত্বের কারণ সম্পর্কে জেনে সে অনুসারে জীবন পরিচালনা করা।
পদার্থবিজ্ঞান হলো বিজ্ঞানের চাবিকাঠি। অন্যান্য বিজ্ঞানের মৌলিক শাখা হলো পদার্থবিজ্ঞান। কারণ এর নীতিগুলোই বিজ্ঞানের অন্যান্য শাখাসমূহের ভিত্তি রচনা করেছে। উদাহরণস্বরূপ বলা যায়, অণু-পরমাণু গঠন থেকে শুরু করে ঝড়-বৃষ্টির পূর্বাভাষ পর্যন্ত পদার্থবিজ্ঞান বিস্তৃত। পঠন পাঠনের সুবিধার জন্য এবং পদার্থবিজ্ঞানকে বিশদভাবে আলোচনার জন্য তাকে বিভিন্ন ভাগে ভাগ করা হয়েছে, যথা-
(১) সাধারণ পদার্থবিজ্ঞান (General Physics)
(২) তাপবিজ্ঞান (Heat)
(৩) শব্দবিজ্ঞান (Sound)
(৪) আলোকবিজ্ঞান (Light)
(৫) চুম্বকবিজ্ঞান (Magnetism)
(৬) তড়িৎ বা বিদ্যুৎবিজ্ঞান (Electricity)
(৭) ইলেকট্রনিক্স (Electronics)
(৮) পারমাণবিক বিজ্ঞান (Atomic Physics) ইত্যাদি।
সাধারণ পদার্থবিজ্ঞানকে আবার দুই ভাগে ভাগ করা হয়েছে, যথা-
(১) বলবিদ্যা (Mechanics)
(২) পদার্থের ধর্ম (Properties of matter)
বলবিদ্যা বস্তুর উপর বলের ক্রিয়া সংক্রান্ত বিভিন্ন Bring আলোচনা করে। পদার্থের ধর্ম বস্তুর বিভিন্ন গুণ আলোচনা করে। বলবিদ্যা আবার দুই ভাগে বিভক্ত, যথা—
(১) স্থিতিবিদ্যা (Statics) এবং
(২) গতিবিদ্যা (Dynamics)
স্থিতিবিদ্যা স্থিতিশীল বস্তুর উপর বলের ক্রিয়া আলোচনা করে এবং গতিবিদ্যা গতিশীল বস্তুর উপর বলের ক্রিয়া আলোচনা করে। গতিবিদ্যাকে পুনরায় দুই অংশে ভাগ করা হয়—সৃতিবিদ্যা ও চলবিদ্যা।
পদার্থের কতকগুলো গুণ বা বৈশিষ্ট্য রয়েছে। এগুলোকে মিলিতভাবে পদার্থের ধর্ম (Properties of Matter) বলে। পদার্থের ধর্ম দুই প্রকার, যথা-
(১) সাধারণ ধর্ম (General property) এবং
(২) বিশেষ ধর্ম (Special property)
যে ধর্ম সকল পদার্থেরই কম-বেশি রয়েছে তাকে পদার্থের সাধারণ ধর্ম বলে, যেমন ওজন, বিস্তৃতি, রোধ, স্থিতিস্থাপকতা ইত্যাদি। আর যে ধর্ম সকল পদার্থের নেই তাকে পদার্থের বিশেষ ধর্ম বলে, যেমন তারতা (Visco), পাততা, দৃঢ়তা, ভঙ্গুরতা ইত্যাদি ধর্ম কেবলমাত্র কঠিন পদার্থের বেলায় দেখা যায়। এসব ধর্ম কঠিন পদার্থের বিশেষ ধর্ম। সান্দ্রতা (Viscosity) তরল ও বায়বীয় পদার্থের বিশেষ ধর্ম। পৃষ্ঠটান বা তলটান (Surface Tension) তরল পদার্থের বিশেষ ধর্ম।
পদার্থবিজ্ঞানের পরিসর বা আওতা সুবিস্তীর্ণ। মানব সভ্যতার অগ্রগতির মূলে ইহা ভিত্তিপ্রস্তর স্বরূপ। মানব জীবনের প্রতিটি ক্ষেত্রে ইহা বিশেষভাবে প্রয়োজনীয়। পদার্থবিজ্ঞানের সাহায্য ছাড়া এই মহাবিশ্ব সম্মন্ধে কোনো কিছু জানা আমাদের পক্ষে সম্পূর্ণ অসম্ভব। অসীম আকাশ হতে শুরু করে প্রত্যেক পরমাণুর অভ্যন্তর পর্যন্ত এর পরিধি বিস্তৃত। যেখানেই বস্তু ও শক্তি রয়েছে সেখানেই পদার্থবিজ্ঞানের কিছু না কিছু করণীয় রয়েছে। সুতরাং সাধারণ শিক্ষার বাহক হিসেবে পদার্থবিজ্ঞানের সেবায় ব্রত হওয়া প্রত্যেক নাগরিকের কর্তব্য। পদার্থবিজ্ঞানের ব্যাপকতা এবং এর ব্যবহার মানবকল্যাণে গুরুত্বপূর্ণ ভূমিকা পালন করে চলেছে।
মানব কল্যাণে পদার্থবিজ্ঞানের অবদান অপরিসীম। বিভিন্ন শক্তি হতে দৈনন্দিন জীবনে আমরা প্রভূত আরাম- আয়েশ পেয়ে থাকি। একমাত্র বিদ্যুৎ শক্তি এত প্রকার কার্যে ব্যবহৃত হয়েছে যে, আধুনিক যুগকে বৈদ্যুতিক যুগ বললেও অত্যুক্তি হয় না। বৈদ্যুতিক পাখা, বৈদ্যুতিক বাতি, বৈদ্যুতিক চুল্লি, টেলিগ্রাফ, টেলিফোন, টেলিভিশন, কম্পিউটার, রেডিও, মোটর, বিদ্যুচ্চালিত টেন, বিদ্যুচ্চালিত কল-কারখানা সবই বিদ্যুতের অবদান। বাষ্পীয় ইঞ্জিন, পেট্রোল ইঞ্জিন এবং তৈল ইঞ্জিন হতে আমরা যে তাপ শক্তি পাই তা বিভিন্ন কার্যে প্রয়োগ করি। বায়ুর চাপ মাপার জন্য ব্যারোমিটার, ঊষ্ণতা মাপার জন্য থার্মোমিটার, বায়ুতে জলীয় বাষ্পের পরিমাণ মাপার জন্য আমরা হাইগ্রোমিটার নামক যন্ত্র ব্যবহার করি। আলোকবিজ্ঞানে আমরা চশমা, অণুবীক্ষণ যন্ত্র, দূরবীক্ষণ যন্ত্র, ক্যামেরা প্রভৃতি ব্যবহার করে থাকি। বিভিন্ন বাদ্যযন্ত্র, যথা- হারমোনিয়াম, বাঁশি, ঢাক, ঘণ্টা, পিয়ানো, গ্রামোফোন, বেহালা, এসরাজ, সেতার প্রভৃতি যন্ত্র দ্বারা আমরা বিশেষভাবে উপকৃত হই। বিজ্ঞানের ক্ষেত্রে হাইড্রলিক প্রেস, বিভিন্ন পাম্প, তুলাযন্ত্র, ঘড়ি, দোলক, লিভার, ক্রেন, পুলি প্রভৃতি যন্ত্রের বহুল ব্যবহার রয়েছে। রিয়্যাক্টর নামক যন্ত্রের সাহায্যে পরমাণুর নিউক্লিয়াসকে ভেঙ্গে যে প্রচুর শক্তি পাওয়া যায় সেই শক্তিকে বিভিন্ন শিল্পে এবং চিকিৎসাবিজ্ঞানে প্রয়োগ করা হয়। এছাড়াও বিশ্লিষ্ট এই যন্ত্র পারমাণবিক বোমা প্রস্তুতে ব্যবহৃত হয়। মানুষ আজ রকেট চালিত মহাকাশযানে চড়ে চন্দ্রে এবং গ্রহান্তরে পাড়ি দিচ্ছে। এসবই বিজ্ঞানের বিস্ময়কর আবিষ্কার।
বিজ্ঞানের উন্নতির জন্যই মানুষ পেয়েছে গুহার পরিবর্তে আধুনিক বাড়ি-ঘর, পার্থিব আরাম-আয়েশ ও জীবনের নিরাপত্তা। বিজ্ঞানের অগ্রগতির ফলে মানুষ দূরকে করেছে নিকট, প্রকৃতিকে করেছে বর্ণীভূত এবং অসম্ভবকে করেছে সম্ভব। সুখ-স্বাচ্ছন্দ্য, আরাম-আয়েশ এবং নিরাপত্তার জন্য মানবজাতি বিজ্ঞানের কাছে ঋণী। বিজ্ঞানের কল্যাণে 10 মিটার আকৃতির মৌলিক কণাসহ 100 মিটার দূরত্বের আকাশ পর্যবেক্ষণ করা সম্ভব হয়েছে। অতএব আমাদের প্রত্যেক নাগরিকের বিজ্ঞান সাধনাকে সাধারণ শিক্ষার প্রধান বাহন হিসেবে গ্রহণ করা উচিত।
বৈজ্ঞানিক তত্ত্ব প্রতিষ্ঠার জন্য অনেক চিন্তা-ভাবনা ও পরীক্ষা-নিরীক্ষার প্রয়োজন। বৈজ্ঞানিক তত্ত্ব কীভাবে প্রতিষ্ঠা লাভ করে তা বুঝাবার জন্য একটি মনোজ্ঞ উদাহরণ দেওয়া হলো। মনে করি, একটি ছেলে বাড়ি হতে হারিয়ে। গিয়েছে। গৃহস্বামী এই সংবাদ পেয়ে সঙ্গে সঙ্গেই অস্থির হয়ে উঠবেন এবং জল্পনা-কল্পনা করতে শুরু করবেন। প্রথমেই তিনি মনে করবেন যে ছেলেটি কোনো প্রতিবেশীর বাড়িতে গিয়েছে। এটা তদন্ত করবার জন্য তিনি প্রতিবেশীর বাড়িতে যাবেন। কিন্তু ছেলেটিকে যদি প্রতিবেশীর বাড়িতে পাওয়া না যায় তবে তিনি ধরে নিবেন যে তাঁর অনুমান মিথ্যা এবং তিনি এই অনুমান পরিত্যাগ করবেন। মনে করি, ঠিক ঐ সময়ে জনৈক ভদ্রলোক গৃহস্বামীকে জানালেন যে, ছেলেটিকে 'X' নামক রাস্তায় দেখা গিয়েছে। তখন গৃহযামী ধরে নিবেন যে, তাঁর ছেলে হারিয়ে যায়নি বরং ছেলেটি 'X' নামক রাস্তায় গিয়েছে। তখন তিনি ছেলেটির সন্ধানে X নামক রাস্তায় যাবেন। যাবার পর তিনি দেখলেন যে 'X' নামক রাস্তাটি দুটি রাস্তায় বিভক্ত হয়ে গিয়েছে। মনে করি, একটি 'Y' এবং অপরটি 'Z'। এখন তাঁর নিকট দুটি সম্ভাবনা দেখা দিবে। ছেলেটি দুটি রাস্তার যে কোনো একটি রাস্তায় যেতে পারে। ছেলেটি কোন রাস্তায় গিয়েছে এর সত্যতা নিরূপণের জন্য ঐ জায়গায় তদন্তের প্রয়োজন। তদন্তের পর দেখা গেল যে, ছেলেটি 'Z' নামক রাস্তায় গিয়েছে। এখন গৃহস্বামীর ধারণা ছেলেটি হারিয়ে যায়নি। সে 'X' নামক রাস্তা হয়ে 'Z' নামক রাস্তায় গিয়েছে। ছেলেটিকে পাবার জন্য তিনি '2' নামক রাস্তায় যাবেন। মনে করি, 'Z' নামক রাস্তাটি আবার তিনটি রাস্তায় বিভক্ত হয়ে গেছে। সেগুলো হলো 'P', 'Q' এবং 'R"। ছেলেটি কোন রাস্তায় গিয়েছে তা জানার জন্য আরও তদন্তের প্রয়োজন। এভাবে ছেলেটি সম্পর্কে আমরা ক্রমাগত জানতে পারি এবং আমাদের তত্ত্ব প্রতিষ্ঠা লাভ করতে থাকবে। অনুরূপভাবে বলা যেতে পারে যে বৈজ্ঞানিক তত্ত্ব প্রতিষ্ঠার জন্য শতাব্দীর পর শতাব্দী ধরে জল্পনা-কল্পনা, চিন্তা-ভাবনা ও পরীক্ষা-নিরীক্ষা চালিয়ে যেতে হবে।
কোনো কিছু সম্পর্কে সঠিক উপলব্ধি বা বোধগম্যতা হলো ঐ বিষয় সম্পর্কে স্পষ্ট ধারণা। যেমন তাপের ধারণা হলো— তাপ একপ্রকার শক্তি যা কোনো বস্তুতে প্রয়োগ করলে বা বস্তুটিকে গরম করলে বস্তুটির তাপমাত্রা বৃদ্ধি পায় এবং বর্জন করলে তাপমাত্রা হ্রাস পায়।
যখন কোনো তত্ত্ব অনেক পরীক্ষা-নিরীক্ষার সাহায্যে প্রমাণিত হয় এবং এর মূল কথাগুলি একটি উক্তির মাধ্যমে প্রকাশ করা হয় তখন তাকে বৈজ্ঞানিক সূত্র বলা হয়। সূত্র অনেক সময় আবিষ্কর্তার নামানুসারে; যেমন ও'মের সূত্র, বয়েলের সূত্র: কখনওবা বিষয়ের নামে যেমন শক্তির নিত্যতা সূত্র, তাপগতিবিদ্যার সূত্র; আবার কখনও আবিষ্কারক এবং বিষয় উভয়ের নামে হয়ে থাকে, যেমন নিউটনের গতিসূত্র, গ্যালিলিওর পড়ন্ত বস্তুর সূত্র।
যে সকল প্রাকৃতিক সত্য সরাসরি স্পষ্টভাবে প্রমাণ করা যায় এবং ঐ সত্যের সাহায্যে অনেক প্রাকৃতিক ঘটনাকে প্রমাণ করা যায়, তাকে নীতি বলে। যেমন ডপলারের নীতি, হাইজেনবার্গের অনিশ্চয়তা নীতি ইত্যাদি।
কোনো গাণিতিক মডেল বা সূত্র প্রতিষ্ঠা করার লক্ষ্যে যদি কিছু পূর্বশর্ত স্বীকার করে নেওয়া হয়, তবে ঐ পূর্বশর্তসমূহকে স্বীকার্য (Postulates) বলে। যেমন— বিখ্যাত বিজ্ঞানী নীলস বোর (Neils Bohr) পরমাণু মডেল প্রদানের জন্য দুটি স্বীকার্য গ্রহণ করেন। আবার বিজ্ঞানী আইনাস্টাইন আপেক্ষিকতার বিশেষ তত্ত্ব প্রবর্তন করেন যা দুটি মৌলিক স্বীকার্যের উপর প্রতিষ্ঠিত।
বিজ্ঞানীরা তাঁদের পর্যবেক্ষিত ঘটনার কারণ সম্মন্ধে ব্যাখ্যা প্রদানের জন্য অনেক সময় পূর্বে আবিষ্কৃত প্রাকৃতিক নিয়মের সাথে সামজস্য রেখে কিছু অনুমান করেন। এই অনুমানগুলোকে বলা হয় অনুকল্প। অনুকল্পগুলো পর্যবেক্ষিত ঘটনার প্রাথমিক ব্যাখ্যা প্রদান করে। অনুকল্পগুলোর সত্যতা যাচাইয়ের জন্য পরীক্ষা সম্পাদন করা হয় এবং পরীক্ষায় সত্য প্রমাণিত হলে তা তত্ত্বে পরিণত হয়। পরীক্ষণ বা পর্যবেক্ষণ দ্বারা অনুকল্প সমর্থিত হতেও পারে, আবার বাতিলও হতে পারে। তবে কিছু কিছু অনুকল্প আছে যা প্রমাণিত হওয়ার পরেও অনুকল্প হিসেবে এখনও পরিচিত। যেমন অ্যাভোগেড্রোর অনুকল্প (Avogadro's hypothesis) |
অনুকল্প ও নিয়মের সমন্বয়ে তত্ত্ব প্রতিষ্ঠিত। পরীক্ষা-নিরীক্ষার দ্বারা প্রমাণিত অনুকল্পকে তত্ত্ব বলে। বৈজ্ঞানিক তত্ত্বের সাহায্যে প্রকৃতিকে সবচেয়ে বিশ্বাসযোগ্যভাবে ব্যাখ্যা করা যায়। যখন কোনো তত্ত্বকে কিছু ধারণা বা উক্তি এবং সমীকরণের মাধ্যমে ব্যাখ্যা করা যায়, তখন সেই তত্ত্বকে সূত্র বলে। সুতরাং সকল সূত্রই তত্ত্ব, তবে সকল তত্ত্ব সূত্র নয়। আবার সকল তত্ত্বই অনুকল্প এবং সকল অনুকল্প তত্ত্ব নয়। তত্ত্ব সাধারণত আবিষ্কর্তার নামানুসারে অথবা বিষয়ের সাথে সংগতি রেখে নামকরণ করা হয়। যেমন আইনস্টাইনের আপেক্ষিক, তত্ত্ব, কোয়ান্টাম তত্ত্ব ইত্যাদি।
পদার্থবিজ্ঞান হচ্ছে বিজ্ঞানের অন্যান্য শাখার ভিত্তি। বিজ্ঞানের অন্যান্য শাখার উন্নয়নে পদার্থবিজ্ঞান গুরুত্বপূর্ণ ভূমিকা পালন করে আসছে। পদার্থবিজ্ঞানের সূত্রাবলি বিজ্ঞানের নতুন শাখার উদ্ভব ঘটিয়েছে যাকে আমরা জীবপদার্থবিদ্যা বলতে পারি। Mechanical, nuclear, gravimetric এবং acoustics পদ্ধতি বিজ্ঞানের বিভিন্ন শাখায় বিশেষ করে ভূতত্ত্ববিদ্যা, পরিমাপন বিদ্যা, সমুদ্র গবেষণা ও ভূকম্পবিদ্যায় ব্যাপক হারে ব্যবহৃত হয়ে আসছে। সুতরাং বলা যায় মানবজাতির উন্নতি এবং প্রযুক্তির উন্নয়নে পদার্থবিজ্ঞানের ভূমিকা খুবই গুরুত্বপূর্ণ। নিম্নে বিভিন্ন বিজ্ঞান এবং সাহিত্য সংস্কৃতি, সমাজবিজ্ঞানসহ দৈনন্দিন জীবনের বিভিন্ন বিষয়ের উপর পদার্থবিজ্ঞানের প্রভাব আলোচনা করা হলো।
পরমাণুর গঠন, তেজস্ক্রিয়তা, এক্স-রে বর্তমান রসায়ন শাস্ত্রোর জগতে বিপ্লব সূচনা করেছে। এই সমস্ত গবেষণা মৌলের পর্যায় সারণিতে পুনর্বিন্যাস ঘটিয়েছে, নমুনা বস্তুর গতি নির্ণয় করেছে, ভ্যালেন্সির প্রকৃতি এবং রাসায়নিক বন্ধন সম্বন্ধে অবহিত করেছে। ইহা জটিল রাসায়নিক গঠন জানতে সহায়তা করে।
পদার্থবিজ্ঞান হচ্ছে তাত্ত্বিক বিজ্ঞান। পদার্থবিজ্ঞানের তত্ত্বগুলি গাণিতিক ধারণার মাধ্যমে সম্পন্ন হয়। তাত্ত্বিক পদার্থবিজ্ঞানের উন্নয়নে গণিতশাস্ত্র শক্তিশালী হাতিয়ার হিসেবে কাজ করে আসছে।
জীববিদ্যায় পদার্থবিজ্ঞানের ভূমিকা অপরিসীম। জীববিদ্যা অধ্যয়নে মাইক্রোস্কোপের ব্যবহার অনেক গুরুত্বপূর্ণ। ইলেকট্রন মাইক্রোস্কোপের সাহায্যে কোষের গঠন জানা অনেক সহজ হয়েছে। কোষের গঠন জানতে ইলেকট্রনিক মাইক্রোস্কোপ অনেকটা সম্ভবপর করে তুলেছে। X-Ray এর ব্যবহার নিউক্লিক এসিডের গঠন জানতে সহায়তা করে যা জীবনকার্যের মূল প্রক্রিয়া নিয়ন্ত্রণ করে।
জ্যোতির্বিদ্যা সম্পৰ্কীয় টেলিস্কোপ গ্যালিলিওকে জ্যোতিষ্কমণ্ডলী সম্পর্কে জানতে সহায়তা করেছিল। বিভিন্ন দেশের মানমন্দিরে বড় বড় টেলিস্কোপ স্থাপন করে সৌরজগতের বিভিন্ন গ্রহ সম্মন্ধে আমরা জ্ঞানার্জন করতে পারি। রেডিও টেলিস্কোপের ব্যবহার Quasars এবং Pulsars আবিষ্কারে গুরুত্বপূর্ণ ভূমিকা পালন করেছে এবং ইহা জ্যোতির্বিজ্ঞানীদের বিশ্বব্রহ্মাণ্ডের অনেক রহস্য উদ্ঘাটন করতে সহায়তা করেছে। পদার্থবিজ্ঞানের উন্নত চিত্রগ্রহণ পদ্ধতি জ্যোতির্বিদ্যার জগতে বিরাট ভূমিকা পালন করেছে।
প্রযুক্তি কীভাবে তোমার জীবনকে প্রভাবিত করে তা খেয়াল কর। সকালে ঘুম থেকে উঠা হতে শুরু করে ব্রাশ করা, গোসল করা, রান্না করা, খাওয়া, কলেজে যাওয়া, গাড়িতে উঠা, রাতে বাতি জ্বালিয়ে পড়াশুনা করা, কলম দিয়ে খাতায় লেখা, জ্বর মাপা, ঘড়ি দেখা, রেডিও-টিভিতে খবর শুনা সবকিছুই হলো প্রযুক্তি। এছাড়া কৃষকের জমি চাষ করে ফসল ফলানো, বিভিন্ন রোগের চিকিৎসার জন্য ব্যবহৃত হয় নানা রকমের প্রযুক্তি। তাই বলা যায়, প্রযুক্তি আমাদের জীবনযাত্রাকে প্রভাবিত করছে। আধুনিক প্রযুক্তির মধ্যে সবচেয়ে বিস্ময়কর প্রযুক্তি হলো তথ্য প্রযুক্তি। এই সকল প্রযুক্তিকে সুশৃঙ্খল ও সমৃদ্ধ করার জন্য ভিন্ন ভিন্ন শাখায় বিভক্ত করা হয়েছে। যেমন তথ্য প্রযুক্তি, কৃষি প্রযুক্তি, চিকিৎসা প্রযুক্তি, মহাকাশ প্রযুক্তি ইত্যাদি।
প্রযুক্তি সাধারণত সাধারণ বিজ্ঞান কিংবা পদার্থবিজ্ঞানের প্রয়োগের উপর নির্ভরশীল। পদার্থবিজ্ঞান ও অন্যান্য বিজ্ঞানের বাস্তব প্রয়োগ শিল্পের উন্নয়নে এবং মানবের জীবন-মানের উন্নয়নে বিশেষ ভূমিকা পালন করে থাকে। ফ্যারাডে কর্তৃক আবিষ্কৃত ইলেকট্রোম্যাগনেটিক ইনডাকশন এক অভূতপূর্ব আবিষ্কার যা শুধু মানুষের উন্নয়নই ঘটায়নি; বরং তা প্রযুক্তির মূল ভিত্তি। স্টিম ইঞ্জিন জেনারেটর, মোটরের আবিষ্কার শিল্প বিপ্লবের সূচনা করেছে। দীর্ঘ তরঙ্গদৈর্ঘ্য পরিসরে তড়িৎ চৌম্বকীয় তরঙ্গের জ্ঞান রেডিও, টেলিভিশন, বেতার যোগাযোগ ব্যবস্থার উন্নয়নে বিশেষ অবদান রাখছে। স্যাটেলাইট চ্যানেলের মাধ্যমে আমরা বিভিন্ন দেশের অনুষ্ঠান টিভির পর্দায় সরাসরি দেখতে পাই। এ ধরনের স্যাটেলাইট আবহাওয়ার পূর্বাভাষ দিতে সক্ষম। তাছাড়া ভূতাত্ত্বিক জরিপ (Geophysical Survey) এবং তেলের খনি আবিষ্কার করতে সহায়তা করে।
আমরা গৃহে ও শিল্প কারখানায় যে বিদ্যুৎ ব্যবহার করে থাকি তা বিভিন্ন প্রকার শক্তির রূপান্তরের মাধ্যমে বৈদ্যুতিক শক্তিতে রূপান্তরিত হয়। বিদ্যুৎ উৎপাদন কেন্দ্রে তাপ শক্তিকে বৈদ্যুতিক শক্তিতে রূপান্তরিত করা হয়।
জলবিদ্যুৎ কেন্দ্রে পানির বিভব শক্তিকে ব্যবহার করে যান্ত্রিক শক্তিকে বৈদ্যুতিক শক্তিতে রূপান্তরিত করা হয়। নিউক্লিয় পারমাণবিক চুল্লীতে ফিশন মিথস্ক্রিয়ার ফলে সৃষ্ট নিউক্লিয় শক্তিকে ব্যবহার করে বিদ্যুৎ উৎপাদন করা হয়। এগুলোসহ পদার্থবিজ্ঞানের বিভিন্ন প্রয়োগ প্রযুক্তিক্ষেত্রে উন্নয়নে গুরুত্বপূর্ণ ভূমিকা রাখছে। সুতরাং পদার্থবিজ্ঞান প্রযুক্তির জগতে এবং আমাদের দৈনন্দিন জীবনে বিরাট অবদান রাখছে।
আধুনিক চিকিৎসা যেমন মানবজীবন রক্ষাকারী হিসেবে কাজ করছে তেমনি পদার্থবিজ্ঞানের উদ্ভাবিত নানাবিধ যন্ত্র সঠিক রোগ নির্ণয়ে দীর্ঘদিন অবদান রেখে চলেছে। উদাহরণস্বরূপ বলা যায়, এক্স-রে, আলট্রাসনোগ্রাফ, সিটিস্ক্যান, এম আর আই, ইসিজি, এন্ডোসকোপি, রেডিওথ্যারাপি, ইটিটি, এনজিওগ্রাফি ও আইসোটোপ ব্যবহার করে চিকিৎসকগণ তাদের চিকিৎসা ব্যবস্থাকে সঠিকভাবে প্রয়োগ করতে সক্ষম হচ্ছে। চিত্র ১১ এ এক্স-রে ও ইসিজি মেশিন দেখানো হলো। রোগ নির্ণয়ে X-Ray ব্যবহৃত হয়ে থাকে। ক্যান্সারসহ অন্যান্য রোগের চিকিৎসায় রেডিওথেরাপি প্রদান করা হয় এবং এতে রেডিও আইসোটোপ ব্যবহৃত হয়ে থাকে।
প্রযুক্তি মানব সভ্যতার মতোই পুরানো। যখন থেকে সভ্যতার ইতিহাস লেখা হচ্ছে তার আগে থেকেই প্রযুক্তির ব্যবহার চলে আসছে। আমাদের বেঁচে থাকার জন্য সবচেয়ে গুরুত্বপূর্ণ হলো খাদ্য। প্রকৃতিতে যেসব উদ্ভিদ ও প্রাণী সহজাতভাবে জন্মে ও বৃদ্ধি পায় তা মানুষ এক সময় ব্যবহার করেছে। উদ্ভিদ, গাছের ফল, প্রাণীদের মাংস খাদ্যরূপে মানুষ গ্রহণ করেছে শত শত বছর ধরে। পরবর্তীতে যাযাবর জীবনের অবসান ঘটিয়ে মানুষ যখন খাদ্য উৎপাদন ও পশুপালন শুরু করল তখনই কৃষি সভ্যতার শুরু।
কৃষি প্রযুক্তিতে বড় ধরনের পরিবর্তন এলো দুটো কারণে। একটি হলো উদ্ভিদবিজ্ঞানীরা আবিষ্কার করলেন কীভাবে উদ্ভিদ সূর্যের আলো থেকে শক্তি নিয়ে এবং মাটি, পানি ও বাতাস থেকে প্রয়োজনীয় উপাদান নিয়ে খাদ্য উৎপাদন করে। অন্যটি হলো নতুন সব কৃষি যন্ত্রের উদ্ভাবন ও কৃষিকাজের যান্ত্রিকীকরণ। এর ফলে কৃষির ব্যাপক অগ্রগতি ঘটেছে যাকে কৃষি বিপ্লব বলা যায়। এই সকল উদ্ভাবিত সকল যন্ত্রপাতি হলো পদার্থবিজ্ঞানের অবদান। চিত্র ১.২ এ কয়েকটি কৃষি যন্ত্রপাতি দেখানো হলো।
সাহিত্য ও সংস্কৃতি সভ্য জাতিসত্তার একটি উল্লেখযোগ্য দিক। সাহিত্য ও সংস্কৃতি চর্চা মানব সমাজকে সত্য জাতি হিসেবে প্রতিষ্ঠা করে। এরই আওতায় পদার্থবিজ্ঞান নানাভাবে ভূমিকা রেখে চলেছে। উদাহরণস্বরূপ বলা যায় কবিতা পাঠে, শব্দের তীব্রতা বৃদ্ধি করতে, মাইক্রোফোনের সাহায্যে কথা বলা থেকে শুরু করে গান-বাজনা চর্চায় ব্যবহৃত হচ্ছে বিভিন্ন বাদ্যযন্ত্রসহ নানাবিধ পদার্থবিজ্ঞানের উদ্ভাবিত যন্ত্রপাতি ও কলাকৌশল।
পদার্থবিজ্ঞানের ক্ষেত্রে বিজ্ঞানীদের বিভিন্ন আবিষ্কার মানব কল্যাণ এবং উন্নয়নে গুরুত্বপূর্ণ অবদান রেখে চলেছে। পদার্থবিজ্ঞানের সাথে সমাজ জীবনের ঘনিষ্ঠ সম্পর্ক রয়েছে। পদার্থবিজ্ঞানের জগতের যে কোনো আবিষ্কার সমাজকে প্রভাবিত করে। পদার্থবিজ্ঞানের যে কোনো প্রযুক্তি আমাদের জীবনের প্রতিটি স্তরকে স্পর্শ করেছে। পদার্থবিজ্ঞানের আবিষ্কার যোগাযোগের ক্ষেত্রে বৈপ্লবিক পরিবর্তন সাধন করেছে। উদাহরণস্বরূপ- টেলিফোন, টেলিগ্রাফ, টেলিপ্রিন্টার, টেলেক্স, ই-মেইল, ফ্যাক্স, ইন্টারনেট ইত্যাদির মাধ্যমে আমরা সারা বিশ্বের সাথে অতি অল্প সময়ে যোগাযোগ স্থাপন করতে সক্ষম হচ্ছি। রেডিও ও টেলিভিশন আমাদের যোগাযোগ ব্যবস্থাকে দ্রুততর করেছে। স্যাটেলাইট চ্যানেলসমূহ আমাদের যোগাযোগ ব্যবস্থায় যুগান্তকারী বিপ্লবের সূচনা করেছে। বিশ্বের কোথায় কি ঘটেছে বা ঘটছে তা আমরা মুহূর্তের মধ্যে দেখতে পাচ্ছি। Microelectronics, lasers এবং কম্পিউটার মানবের চিন্তনে এবং জীবন ব্যবস্থায় বড় ধরনের পরিবর্তন সাধন করেছে।
মানুষের আচার-আচরণ নির্ভর করে তার ব্যক্তিসত্তা ও কর্মকাণ্ডের উপর। মানুষ প্রকৃতির দাস। সে যে আচরণ অন্যের কাছ থেকে পেয়ে থাকে অপরকেও তদ্রুপ দেওয়ার চেষ্টা করে। এক্ষেত্রে পদার্থবিজ্ঞানের ভাষায় বলা যায় প্রত্যেক ক্রিয়ারই সমান এবং বিপরীত প্রতিক্রিয়া আছে। মানুষের মেধা ও মনন যদি কোনো কারণে থেমে যায় বা বাধাগ্রস্ত হয় তা অন্য কোনো কর্মকাণ্ডে অন্যভাবে প্রতিফলিত হয় এবং তার মেধা, মনন ও প্রতিতার কোনো ঘাটতি ঘটে না। এদিক দিয়ে উক্ত তথ্যটি পদার্থবিজ্ঞানের ভরবেগের নিত্যতার সুরের সাথে একাত্ম হয়ে আছে। এভাবে চলমান জীবনে নানা ক্ষেত্রে পদার্থবিজ্ঞান ওতপ্রোতভাবে জড়িয়ে আছে।
খেলাধুলা শরীর ও মনকে সতেজ করে। সুশৃঙ্খল ও নিয়মমাফিক খেলাধুলায় ব্যবহৃত বিভিন্ন সরঞ্জামানি এবং আনুষঙ্গিক দ্রব্যাদি শুধু খেলার মানকেই বৃদ্ধি করে না বরং শরীর চর্চায় নানাবিধ সুযোগ সৃষ্টি করে দেয়। যেমন ফ্লাশলাইট ব্যবহার করে রাতে আমরা খেলা উপভোগ করি, সময় নিয়ন্ত্রণের জন্য বিভিন্ন ধরনের টাইমার ব্যবহার করি, ফলাফল প্রদর্শনের জন্য কোরবোর্ড ব্যবহার করি, গতি মাপার জন্য লিডোমিটার ব্যবহার করি। এছাড়া খেলাধুলার সাথে সম্পৃক্ত নানা ক্ষেত্রে পদার্থবিজ্ঞানের সকল প্রযুক্তি খেলার জগৎকে সমৃদ্ধ করেছে।
চিরায়িত বলবিদ্যা নিউটনীয় বলবিদ্যা নামে পরিচিত। এই বলবিদ্যায় তিনটি মৌলিক রাশির ধারণা করা হয়েছে। এগুলো হলো স্থান (Space) সময় বা কাল (Time) এবং ভর (Mass) ।
বিজ্ঞানী নিউটনের মতে, স্থান একটি পরম জিনিস যা তার নিজের মধ্যেই অবস্থান করে। এটি 7 বাইরের কোনো কিছুর সঙ্গে সম্পর্কীয় নয় এবং পরিবেশ দ্বারা প্রভাবিত হয় না। যেমন কোনো বস্তুর দৈর্ঘ্য বস্তুর বা পর্যবেক্ষকের গভির উপর নির্ভরশীল নয় এবং স্থির অবস্থার অপরিবর্তনীয়।
নিউটনের মতে সময় বা কাল প্রকৃতিগতভাবে একটি পরম রাশি যা বাইরের কোনো কিছুর উপর নির্ভর না করে সমভাবে এগিয়ে চলে। সুতরাং সময় সর্বজনীন এবং নির্দিষ্ট হারে এগিয়ে চলে যা বস্তু বা পর্যবেক্ষকের গতির উপর নির্ভরশীল নয়। এ থেকে দুটো মন্তব্য করা যায়
(১) পর্যবেক্ষক চলমান বা স্থির যে অবস্থায়ই থাকুক না কেন দুটো ঘটনা ঘটার মধ্যবর্তী সময় সকল পর্যবেক্ষকের জন্য একই মনে হবে, এবং
(২) কোনো পর্যবেক্ষকের কাছে দুটো ঘটনা একই সময়ে ঘটলে পর্যবেক্ষকের কাছে সময় একই হবে, তাদের গতীয় অবস্থা যাই হোক না কেন।
(গ) ভর: নিউটনীয় বলবিদ্যায় কস্তুর ভর একটি মৌলিক রাশি যা তার গতির উপর নির্ভরশীল নয় এবং ভরের নিত্যতা সূত্র অনুসারে কোনো স্বতন্ত্র প্রক্রিয়াধীন বস্তুসমূহের ভর এ প্রক্রিয়াধীন দুই বা ততোধিক বস্তুর ক্রিয়া-প্রতিক্রিয়ার দরুন হয়। এর কোনো পরিবর্তন ঘটে না।
বিজ্ঞানী আইনস্টাইন চিরায়ত বলবিদ্যার মৌলিক রাশি তিনটি গতির সাথে পরিবর্তন হয় তা প্রমাণ করেন। সুতরাং রাশি তিনটি পরম নয়।
(ক) স্থান: কোনো বস্তুর গতিশীল অবস্থার দৈর্ঘ্য ঐ বস্তুর স্থির অবস্থার দৈর্ঘ্যের চেয়ে ছোট হওয়াকে দৈর্ঘ্য সংকোচন বলে। সুতরাং গতির সাথে বস্তুর দৈর্ঘ্য সংকুচিত হয়।
(খ) সময় বা কাল : কোনো জড় বা স্থির কাঠামোতে সংঘটিত ঘটনা উক্ত কাঠামো সাপেক্ষে গতিশীল অন্য কোনো কাঠামো থেকে লক্ষ করলে দেখা যাবে ঘটনার সময় ব্যবধান বৃদ্ধি পেয়েছে। এ বিষয়টিকে কাল দীর্ঘায়ন বা সময় প্রসারণ বলে। সুতরাং গতির সাথে সময়ের প্রসারণ ঘটে।
(গ) ভর : বস্তু গতিশীল হলে এর আর বৃদ্ধি পায়। এই ঘটনাকে ভরের আপেক্ষিকতা বা গতিজনিত ভর বৃদ্ধি বলে।
যে একক অন্য কোনো এককের উপর নির্ভর করে না এবং একেবারে সম্পর্কশূন্য বা স্বাধীন তাকে মৌলিক একক বলে। যেমন দৈর্ঘ্য বা ভর বা সময়ের একক অন্য কোনো এককের উপর নির্ভর করে না। সুতরাং দৈর্ঘ্যের একক ভরের একক এবং সময়ের একক মৌলিক একক। এই তিনটিকে ভিত্তি করে যে একক গঠন করা হয় বা মৌলিক একক হতে যে একক পাওয়া যায় তাকে লম্ব বা যৌগিক একক বলে। উদাহরণস্বরূপ ক্ষেত্রফল মাপতে দৈর্ঘ্যকে প্রস্তু দিয়ে গুণ করতে হয়। যেমন- এক মিটার (m) দৈর্ঘ্য ও এক মিটার (m) প্রস্থবিশিষ্ট ক্ষেত্রের
ক্ষেত্রফল = 1 মিটার (m) x 1 মিটার (m) = 1 বর্গ মিটার বা 1m2।
এই বর্গ মিটারই ক্ষেত্রফল মাপার একক। সুতরাং দেখা যাচ্ছে যে, দৈর্ঘ্যের একক জানা থাকলে, ক্ষেত্রফলের একক জানা যায়, তার জন্য নতুন কোনো এককের দরকার হয় না। অতএব ক্ষেত্রফলের একক যৌগিক একক। তেমনি আয়তন, বেগ, ত্বরণ, বল ইত্যাদির একক যৌগিক একক।
মৌলিক একক তিনটি যথা—
(ক) দৈর্ঘ্যের একক (Unit of length)
(খ) ভরের একক (Unit of mass) এবং
(গ) সময়ের একক (Unit of time)।
এই এককগুলি হবে নির্দিষ্ট, সুবিধাজনক ও অপরিবর্তনীয় অর্থাৎ গরমকালে কোনো দূরত্ব যদি মিটার হয়, 1 তবে শীতকালেও তা 1 মিটার হবে। সময় কিংবা চাপ ইত্যাদির প্রভাবে তাদের কোনো পরিবর্তন ঘটে না।
অবশ্য প্রশ্নও জাগে বিজ্ঞানী আইনস্টাইন-এর আপেক্ষিক তত্ত্ব অনুসারে কোনো ভর, সময় ও দৈর্ঘ্য মহাজগতের সব স্থান হতে সমান হবে কী ?
1960 সালে আন্তর্জাতিক সম্মেলনে গৃহীত একক এবং সংখ্যা লেখার কয়েকটি নিয়ম নিম্নে উল্লেখ করা হলো :
(১) একক একবচনে লিখতে হবে, যথা km, কিন্তু (kms নয়)
(২) এককের শেষে ফুলস্টপ দেয়া যাবে না, যেমন km, কিন্তু (km. নয়)
(৩) দশমিক চিহ্ন দেয়ার নিয়ম 1.9, তবে অনেকে 1'9 এভাবেও লেখে।
(৪) দীর্ঘ সংখ্যা পাঠে সুবিধার জন্যে দশমিক স্থান হতে আরম্ভ করে ডানে বা বামে একত্রে তিনটি করে সংখ্যা লিখতে হবে।
অশুদ্ধ 24765'321 | শুদ্ধ 24,765'321 |
(৫) একক লেখার সময় প্রয়োজন মতো বিভক্তি চিহ্ন (/) যথা (N/m2) একবার মাত্র ব্যবহার করা চলে। তবে তা না করাই ভালো। যেমন N/m2 এর স্থলে Nm-2 লেখা উচিত।
(৬) এককের দশমাংশগুলো নিম্নলিখিতভাবে লিখতে হবে, যেমন
ডেসি (=10-¹)d
সেন্টি (= 10-2)c ইত্যাদি।
(৭) সাধারণ ব্যবহারে মিনিট, ঘণ্টা, দিন, সপ্তাহ, মাস, বছর ইত্যাদি চললেও বিজ্ঞানের সঠিক পরিমাপে এ ধরনের একক ব্যবহার করা অনুচিত।
উপরের তিনটি প্রাথমিক একককে প্রকাশ করার জন্য তিনটি পদ্ধতি আছে। এছাড়া পদার্থবিজ্ঞানের বিভিন্ন শাখার প্রয়োজন উপযোগী অতিরিক্ত এক বা একাধিক প্রমাণ রাশি ও তার একক যুক্ত করে পরিমাপের আরও দুটি পদ্ধতি প্রচলিত আছে। পদ্ধতিগুলো নিম্নে আলোচনা করা হলো।
এ পদ্ধতিকে সংক্ষেপে সি. জি. এস. (C. G.S.) বা সেমি. গ্রাম সে পদ্ধতি বলা হয়।
এখানে,
সি. অক্ষরটি বুঝাচ্ছে - সেন্টিমিটার—দৈর্ঘ্যের একক
জি. অক্ষরটি বুঝাচ্ছে -গ্রাম—ভরের একক
এস. অক্ষরটি বুঝাচ্ছে -সেকেন্ড সময়ের একক
অর্থাৎ এই পদ্ধতিতে দৈর্ঘ্যের একক সেন্টিমিটার, ভরের একক গ্রাম এবং সময়ের একক সেকেন্ড। এই পদ্ধতিকে দশমিক পদ্ধতি (Decimal System) বলে ।
এই পদ্ধতিকে সংক্ষেপে এম. কে. এস. (M. K. S.) পদ্ধতি বলা হয়।
এখানে,
এম. অক্ষরটি বুঝাচ্ছে মিটার - দৈর্ঘ্যের একক
কে অক্ষরটি বুঝাচ্ছে -কিলোগ্রাম ভরের একক
এস. অক্ষরটি বুঝাচ্ছে -সেকেন্ড সময়ের একক।
অর্থাৎ, এ পদ্ধতিতে দৈর্ঘ্যের একক মিটার, ভরের একক কিলোগ্রাম এবং সময়ের একক সেকেন্ড ।
বিভিন্ন দেশে ভিন্ন ভিন্ন পদ্ধতির এককের প্রচলন আছে। কোথাও এফ. পি. এস. পদ্ধতি, কোথাও সি. জি. এস. পদ্ধতি, আবার কোথাও এম. কে. এস. পদ্ধতি। পরিমাপের এই বৈষম্যের জন্য বাস্তব ক্ষেত্রে বেশ অসুবিধা হয়। এই অসুবিধা দূর করার উদ্দেশ্যে বিশ্বের বিভিন্ন দেশের বিজ্ঞানীরা পরিমাপের উপরোক্ত তিনটি পদ্ধতি ছাড়াও 1960 সালে পরিমাপের একটি নতুন পদ্ধতি প্রচলন করেন। এটাই আন্তর্জাতিক পদ্ধতির একক বা এস, আই. একক। পূর্বের এম. কে. এস. পদ্ধতির সাথে আরও কয়েকটি প্রমাণ রাশি ও উহার একক যোগ করে এই পদ্ধতি তৈরি করা হয়। এই পদ্ধতিতে ব্যবহৃত বিভিন্ন রাশি এবং তাদের একক ও প্রতীক নিচের তালিকায় উল্লেখ করা হলো। এই পদ্ধতিতে সর্বমোট নয়টি রাশি আছে।
ক্রমিক সংখ্যা | রাশি | একক | এককের প্রতীক |
1. | দৈর্ঘ্য | মিটার | m |
2. | ভর | কিলোগ্রাম | Kg |
3. | সময় | সেকেন্ড | s |
4. | তাপমাত্রা | ডিগ্রী-কেলভিন | k |
5. | বিদ্যুৎ প্রবাহমাত্রা | অ্যাম্পিয়ার | A |
6. | কোণ (দ্বিমাত্রিক) | রেডিয়ান | rad |
7. | কোণ (ত্রিমাত্রিক) | স্টেরিডিয়ান | St |
8. | দীপন মাত্রা | ক্যান্ডেলা | cd |
9. | পদার্থের পরিমাণ | মোল | mole |
এটি প্রণিধানযোগ্য যে, আন্তর্জাতিক পদ্ধতিতে এ নয়টি মূল এককের সাহায্যে বস্তু জগতের পরিমাপ বিষয়ক সর্বপ্রকার একক পাওয়া যায়।
এ পদ্ধতিতে লম্ব একক এবং তাদের প্রতীক নিম্নে বর্ণিত হলো।
ক্রমিক সংখ্যা | রাশি | একক | এককের প্রতীক |
1. | বল | নিউটন | N |
2. | শক্তি | জুল | J |
3. | ক্ষমতা | ওয়াট | W |
4. | তড়িতাধান | কুলম্ব | C |
5. | বৈদ্যুতিক রোধ | ও'ম | Ω |
6. | বৈদ্যুতিক বিভব | ভোল্ট | V |
7. | কম্পাঙ্ক | হার্জ | Hz |
পরিমাপের পূর্বোক্ত পদ্ধতি ছাড়াও বলবিদ্যা, তড়িৎ ও চুম্বকের সমি প্রয়োজনে আর একটি নতুন পদ্ধতি ব্যবহৃত হয়। এর নাম মিটার কিলোগ্রাম সেকেন্ড-অ্যাম্পিয়ার পদ্ধতি। সংক্ষেপে একে M. K. S. A. System বা এম. কে. এস. এ. পদ্ধতি বলা হয়। এটা একটি সুসংগত পদ্ধতি। এটি চারটি প্রমাণ একক নিয়ে গঠিত।
আমরা জানি, মৌলিক একক তিনটি যথা-
(ক) দৈর্ঘ্যের একক,
(খ) ভরের একক এবং
(গ) সময়ের একক।
(ক) দৈর্ঘ্যের একক : সি. জি. এস. পদ্ধতিতে দৈর্ঘ্যের একক সেন্টিমিটার। 90 ভাগ প্লাটিনাম ও 10 ভা ইরিডিয়ামের সংকর নির্মিত দণ্ডের উপর দুইটি নির্দিষ্ট দাগের মধ্যবর্তী দূরত্বকে আন্তর্জাতিক মিটা (International Proto-type Metre) বলে। আন্তর্জাতিক ওজন ও পরিমাপ সংস্থার রক্ষণশালায় দন্ড বিশেষভাবে রক্ষিত আছে। তাপমাত্রার বৃদ্ধি বা হ্রাসের প্রভাব যাতে এর উপর না পড়ে, সেজন্য দন্ডটিকে 0° তাপমাত্রায় রাখা হয়। এই দূরত্বের একশ ভাগের এক ভাগকে এক সেন্টিমিটার বলে।
সি. জি. এস. এবং এম. কে. এস. ও আন্তর্জাতিক পদ্ধতিতে দৈর্ঘ্যের এককের তালিকা :
10 মিলিমিটার (মিমি)= 1 সেন্টিমিটার (সেমি) 10 সেন্টিমিটার= 1 ডেসিমিটার (ডেমি) 10 ডেসিমিটার (dm) = 1 মিটার (মি) 10 মিটার (m)= 1 ডেকামিটার (ডেকামি) | 10 ডেকামিটার (Dm) = 1 হেক্টোমিটার (হেমি) 10 হেক্টোমিটার (Hm)= 1 কিলোমিটার (কিমি) 10 কিলোমিটার (Km) = 1 মিরিয়া মিটার (মিরিয়ামি) |
এককের উপগুণিতক
| উপসর্গ | সংকেত | অর্থ | এককের কতগুন |
ডেসি (Deci) সেন্টি ( Centi) মিলি (Mili) মাইক্রো (Micro) ন্যানো (Nano) পিকো (Pico) ফেমটো (Femto) অ্যাটো (Ato) | d c m n p f a |
| 10-1 (দশাংশ) 10-2 (শতাংশ) 10-3 (সহস্রাংশ) 10-6 (নিযুতাংশ) 10-9 অংশ 10-12 10-15 অংশ 10-18 অংশ | |
এককের গুণিতক | ডেকা (Deca) হেকটো (Hecto) কিলো (Kilo) মিরিয়া (Myria) মেগা (Mega) গিগা (Giga) টেরা (Tera) পেটা (Peta) এক্সা (Exa) | da h k Ma M G T P E |
| 101 গুন 102 (শত গুণ) 103 (হাজার গুণ) 104 (দশ হাজার গুণ) 106 (দশ লক্ষ গুণ) 109 গুণ 1012 গুণ 1015 গুণ 1018 গুণ |
গাণিতিক উদাহরণ
১। এক টনে কত কিলোগ্রাম (kg) ?
আমরা জানি,
1 টন = 2.240 পাউন্ড
= 2.240 x 453.6g
= kg
= 1.016 kg
২। 1 গ্যালন কত ঘন মিটার (m-3)-এর সমান ?
আমারা জানি,
1 গ্যালন = 277 inch3 ও 1 inch = 2.54 cm
:• 1 inch3 = (2'54 cm)3 = 16.39 cm3 = 16.39 x 10-6 m3
কাজেই, 1 গ্যালন =277 x 16'39 x 10-6 m³ = 4'54 x 10-3 m³
মাত্রা (Dimension) : আমরা পূর্বেই আলোচনা করেছি যে উৎপত্তি অনুসারে রাশি (দুই) প্রকার—একটি মৌলিক রাশি এবং অপরটি যৌগিক রাশি। আমরা আরও জানি, যে সকল রাশি অন্য কোনো রাশির উপর নির্ভর করে না, তাদেরকে মৌলিক রাশি বলে। এখন আমরা আলোচনা করব— কোনো রাশির 'মাত্রা' বলতে কী বুঝি ? কোনো রাশির মাত্রার নিম্নলিখিত যে কোনো একটি সংজ্ঞা দেয়া যেতে পারে—
উদাহরণস্বরূপ দৈর্ঘ্য একটি রাশি। ফুট বা সেমি বা মিটার তার মৌলিক একক। দৈর্ঘ্য এবং এর মৌলিক এককের মধ্যে সম্পর্ক স্থাপনের জন্য 'L' সংকেত ব্যবহার করা হয়। এখানে L দৈর্ঘ্য বুঝায়। আবার ফুট, বা সেমি বা মিটার এরাও প্রত্যেকে দৈর্ঘ্য প্রকাশ করে। সুতরাং 'L' অক্ষর দৈর্ঘ্য এবং এর মৌলিক এককের মধ্যে যোগসূত্র স্থাপনের একটি সংকেত। অতএব দৈর্ঘ্যের মাত্রা L ।
পদার্থবিজ্ঞানের তিনটি মৌলিক রাশি হলো দৈর্ঘ্য, তর এবং সময়। এদের মাত্রা যথাক্রমে L. M এর T। দৈর্ঘ্যকে L দ্বারা প্রকাশ করা হয় বলে দৈর্ঘ্য এক L-মাত্রিক রাশি, ক্ষেত্রফল হলো দৈর্ঘ্য × দৈর্ঘ্য = L×L =L2 । অতএব ক্ষেত্রফল দুই L-মাত্রিক রাশি। অনুরূপভাবে, আয়তন হলো দৈর্ঘ্য × দৈর্ঘ্য × দৈর্ঘ্য = L×L×L = L3 । ।অতএব আয়তন হলো তিন L-মাত্রিক রাশি ইত্যাদি। এখানে [L], [L2],[L3]-কে মাত্রিক বা মাত্রা সমীকরণ (Dimensional equation) বলে। মাত্রা সমীকরণের নিম্নরূপ সংজ্ঞা দেওয়া যেতে পারে :
পদার্থবিজ্ঞানে মাত্রা সমীকরণের ভূমিকা অপরিসীম। নিম্নে এর ভূমিকা বা প্রয়োজনীয়তা উল্লেখ করা হলো :
(১) এক পদ্ধতির একককে অন্য পদ্ধতির এককে রূপান্তর করা যায়।
(২) সমীকরণের নির্ভুলতা যাচাই করা যায়।
(৩) বিভিন্ন রাশির সমীকরণ গঠন করা যায়।
(৪)কোনো ভৌত রাশির একক নির্ণয় করা যায়।
(৫) কোনো ভৌত সমস্যার সমাধান করা যায়।
মাত্রা সমীকরণের বহুল প্রয়োগ থাকা সত্ত্বেও এর কিছুটা সীমাবদ্ধতা রয়েছে, যেমন-
(১) কেবল L,M ও T এই তিনটি মৌলিক রাশির উপর ভিত্তি করে আমরা মাত্রা সমীকরণ গঠন করি। কিন্তু কোনো অজ্ঞাত রাশি যদি এই তিন রাশি অপেক্ষা বেশি রাশির উপর নির্ভরশীল হয়, তবে সেই অজ্ঞাত রাশির মাত্রা সমীকরণ আমরা গঠন করতে পারি না। যেমন তাপ পরিবাহিতাংকের মাত্রা সমীকরণ কেবল L. M ও T দ্বারা প্রকাশ করা যায় না, কারণ এটি আরও একটি রাশি যথা তাপমাত্রার উপর নির্ভরশীল।
(২) এছাড়া মাত্রিক পদ্ধতিতে কোনো মাত্রাবিহীন রাশি যথা 'ধ্রুবক'-এর মান বের করা যায় না।
নিচে কয়েকটি মাত্রা সমীকরণ দেখানো হলো।
(ক) দৈর্ঘ্য] = [L]
(গ) [ভর] = [M)
(গ) [সময়] = (T)
(ঘ)[বেগ] = = = [LT-2]
(ঙ) [ত্বরণ] = [বেগের পরিবর্তন/ সময়] = [LT-1/T]=[LT-2]
(চ) আয়তন (দৈর্ঘ্য × প্রস্থ × উচ্চতা)= [L][L][ L] = [L3]
(ছ) [বল] = [ভর × ত্বরণ] = [M][LT-1]=[MLT-1]
(জ)[ভর -বেগ)] = [ভর x বেগ] = [M][LT-1]= [MLT-1]
(ঝ) [ক্ষমতা] = [কাজ/সময়] = [ML2T-2/T][L]=[ML2T-3]
(ঞ) [গতিশক্তি] = [ভর] ×[বেগ২]= [M][LT-1]2=[ML2T-2]
(ট) [বলের ভ্রামক] =[বল]×[লম্ব দূরত্ব] =[MLT-2/L]=[MLT-2]
১। নিউটনের সূত্র অনুসারে গ্যাসীয় মাধ্যমে শব্দের বেগ V = , এখানে p = গ্যাসীয় চাপ, এবং D = ঘনত্ব। মাত্রা বিবেচনায় সমীকরণটি সঠিক কি না যাচাই কর।
বামপক্ষ, V = [LT-1]
ডানপক্ষ, ==[LT-1]
আমরা জানি কোনো কিছুর মাপ-জোখের নাম পরিমাপ। পরিমাপ ছাড়া কোনো রাশি সম্মন্ধে সম্যক জ্ঞান লাভ করা সম্ভব নয়। প্রকৃত প্রস্তাবে পদার্থবিজ্ঞানের মূল ভিত্তি হলো বিভিন্ন রাশির পরিমাপ গ্রহণ। এজন্য পদার্থবিজ্ঞানকে পরিমাপবিজ্ঞান বলে।
কোনো রাশি সম্বন্ধে আমরা দুভাবে জ্ঞান লাভ করতে পারি—একটি গুণগত ও অন্যটি পরিমাণগত। বস্তু ও শক্তির বৈশিষ্ট্যকে আমরা ইন্দ্রিয়াদির সাহায্যে অনুভব করতে পারি ও ভাষায় প্রকাশ করতে পারি। বস্তু ও শক্তি সম্বন্ধে এটাই আমাদের গুণগত জ্ঞান। কিন্তু এদের সম্বন্ধে পরিমাণগত জ্ঞান লাভ করতে হলেই পরিমাপের একান্ত প্রয়োজন এবং এই পরিমাপের জন্য মাপকাঠির আবশ্যক ।
যদি বলা হয় একটি কামরা 20 মিটার লম্বা, তবে আমরা বুঝি যে মিটার নামক একটি নির্দিষ্ট দৈর্ঘ্যকে আদর্শ হিসেবে ধরে নেয়া হয়েছে, যার তুলনায় কামরাটি 20 গুণ লম্বা। আবার যদি বলা হয় একটি বস্তুর ভর 10 কিলোগ্রাম, তবে বুঝতে হবে যে, কিলোগ্রাম নামক একটি নির্দিষ্ট ভরকে আদর্শ হিসেবে ধরে নেয়া হয়েছে যার তুলনায় বস্তুর মোট ভর 10 গুণ। সুতরাং একটি রাশির মধ্যে তার একক যতবার থাকবে সেই সংখ্যাই হবে ঐ রাশির মাপ নির্দেশক এবং যে কোনো রাশির পরিমাপ নিতে হলে দুটি জিনিসের প্রয়োজন। একটি হলো সংখ্যা, অপরটি হলো একক।
একটি ছাড়া অপরটি অর্থহীন। যেমন— রেশন ব্যাগে 10 কিলোগ্রাম চাউল আছে। এখানে ভর একটি রাশি, ‘10’ একটি সংখ্যা এবং "কিলোগ্রাম' একক। কিন্তু যদি বলা যায় রেশন ব্যাগে চাউলের ভর 10, তবে তার কোনো অর্থ হয় না। শুধু সংখ্যা দ্বারা রাশি প্রকাশ করা যায় না, এককও বলতে হয়। সুতরাং
রাশির মাপ = সংখ্যা x একক। এটিই হলো পরিমাপের মূলনীতি।
বিজ্ঞান ও প্রযুক্তির যে সমৃদ্ধি আজ আমরা প্রত্যক্ষ করছি তা যুগে যুগে বিজ্ঞানীদের বিভিন্ন ক্ষেত্রে অবদানের ফসল। প্রাচীনকালে ভৌত বিজ্ঞানের বিকাশে গ্রিকদের একচ্ছত্র আধিপত্য ছিল। খেলেস (Thales খ্রি. পূ. 622-569) সূর্য গ্রহণ সম্পর্কে ভবিষ্যদ্বাণীর জন্য বিখ্যাত। বিভিন্ন পর্যবেক্ষণে, উদ্ভাবনে এবং বিজ্ঞানের ক্রমবিকাশের অগ্রযাত্রায় যাদের অবদান চিরস্মরণীয় এমন কয়েকজন বরেণ্য বিজ্ঞানীদের অবদান সম্বন্ধে আলোচনা করা হলো।
পিথাগোরাস (Pythagorous . পূ. 560-480 ) জ্যোতির্বিদ্যা, গণিত, শব্দবিজ্ঞান বিষয়ে অবদানের জন্য বিখ্যাত। তিনি এবং তাঁর অনুসারীরা বিশ্বাস করতেন যে, গাণিতিক সূত্রের সাহায্যে সবকিছুই প্রকাশ করা যেতে ...পারে। খ্রি. পূ. চতুর্থ শতকে ইউক্লিড (Euclid) জ্যামিতি ও আলোকবিজ্ঞানের অনেক মূল্যবান গবেষণা ল্য তথ্য প্রদান করেন।
খ্রি. পূ. তৃতীয় শতকে আর্কিমিডিস (Archimedes ) লিভারের নীতি ও উপস্থিতিবিদ্যার সূত্র আবিষ্কার করেন। তিনি গোলকীয় দর্পণের সাহায্যে সূর্য রশ্মি কেন্দ্রীভূত করে আগুন ধরানোর কৌশল উদ্ভাবন করেন।
বিজ্ঞানের ইতিহাস পর্যালোচনা করলে দেখা যায় যে, আর্কিমিডিসের পরে কয়েক শতাব্দী বিজ্ঞানের তেমন কোনো উল্লেখযোগ্য উন্নতি হয় নি। এ সময়ে বিজ্ঞান চর্চায় এক ধরনের স্থবিরতা লক্ষ করা যায়।
1589 খ্রিস্টাব্দে বিজ্ঞানী গ্যালিলিও (Galileo) মুক্তভাবে পড়ন্ত বস্তুর বিভিন্ন তথ্য-উপাত্ত সংগ্রহ করে তিনটি সূত্র আবিষ্কার করেন। এগুলোকে পড়ন্ত বস্তুর সূত্র বলা হয়। তিনি স্থিতিবিদ্যা ও গতিবিদ্যার ওপর যথেষ্ট অবদান রাখেন।
1610 খ্রিস্টাব্দে বিজ্ঞানী গ্যালিলিও যৌগিক অণুবীক্ষণ যন্ত্র আবিষ্কার করেন। এই যন্ত্রের সাহায্যে অতি ক্ষুদ্র বস্তকে বহুগুণে বর্ধিত করে দেখা যায়। এটি সরল অণুবীক্ষণ যন্ত্র অপেক্ষা অধিক বিবর্ধন ক্ষমতার অধিকারী। গ্যালিলিও দূরবীক্ষণ যন্ত্রও আবিষ্কার করেন। 1610 খ্রিস্টাব্দে তিনি নব আবিষ্কৃত দূরবীক্ষণ যন্ত্র (Telescope) ব্যবহার করে বৃহস্পতি গ্রহের নক্ষত্রগুলো আবিষ্কার করেন। তিনি পানি উত্তোলনের যন্ত্র, বায়ু থার্মোস্কোপ আবিষ্কার করেন। সর্বকালের শ্রেষ্ঠ বিজ্ঞানী আইনস্টাইন গ্যালিলিওকে আধুনিক বিজ্ঞানের চমক হিসেবে আখ্যায়িত করেছেন।
বস্তু কেন মাটিতে পড়ে? মহাবিশ্বে সূর্য, চন্দ্র, গ্রহ, নক্ষত্র ইত্যাদির গতিবিধি সম্পর্কেও প্রাচীনকাল থেকেই মানুষের কৌতূহল ছিল। সপ্তদশ শতাব্দী পর্যন্ত মানুষের ধারণা ছিল যে বস্তুর মাটিতে পতিত হওয়া বস্তুর স্বাভাবিক ঘটনা। তিনি স্বর্গীয় বস্তুসমূহের গতিবিধি সম্পর্কে প্রথমে মতবাদ ব্যক্ত করেন। দ্বিতীয় শতাব্দীর দিকে গ্রিক জ্যোতির্বিদ টলেমি ভূ-কেন্দ্রিক তত্ত্ব উপস্থাপন করেন। এ তত্ত্ব অনুসারে স্থির পৃথিবীকে কেন্দ্র করে সূর্য, চন্দ্র, গ্রহ, নক্ষত্র আবর্তনরত। পঞ্চদশ শতাব্দীতে জ্যোতির্বিদ কোপারনিকাস 'সূর্য-কেন্দ্রিক' তত্ত্ব দেন। এই তত্ত্বে সূর্যকে মহাজগতের কেন্দ্রে স্থির বিবেচনা করা হয়েছে এবং অন্যান্য গ্রহ সূর্যকে কেন্দ্র করে আবর্তন করে। কোপারনিকাসের ধারণা ছিল গ্রহগুলোকে সূর্যের চারদিকে ঘুরতে বাধ্য করে চৌদকে বল। পঞ্চদশ শতাব্দীতে কেপলার গ্রহ-নক্ষত্রের গতিপথের বিভিন্ন উপাত্ত বিশ্লেষণ করে স্থির সিদ্ধান্তে উপনীত হন যে, গ্রহগুলোর গতিপথ বৃত্তাকার নয়, উপবৃত্তাকার। 1658 খ্রিস্টাব্দে নিউটন বল সম্পর্কে ধারণা লাভের জন্য তার বিখ্যাত পরীক্ষাটি করেন। তিনি বাতাসের অনুকূলে ও প্রতিকূলে লাফ দিয়ে দূরত্বের পার্থক্য পর্যবেক্ষণ করেন। 1665 সালে ক্যামব্রিজে পড়ার সময় তিনি মহাকর্ষ বলের তত্ত্ব, ক্যালকুলাস ও আলোর বর্ণালী এই তিনটি সূত্র আবিষ্কার করেন।
গ্রহপুঞ্জের গতির মধ্যে কেপলার কিছু নিয়মনীতি খুঁজে পান এবং এই নিয়মনীতিগুলোকে তিনটি সূত্রের সাহায্যে প্রকাশ করেন। এগুলো কেপলারের সূত্র নামে পরিচিত। কিন্তু কোপারনিকাসের চৌম্বক বলের ধারণার সঙ্গে কেপলার কোনোভাবেই উপবৃত্তাকার প্রকল্প মিলাতে পারছিলেন না। সূর্যকে কেন্দ্র করে গ্রহগুলোর আবর্তন করার সন্তোষজনক কোনো কারণ তিনি দিতে পারেন নি। তাছাড়া একটি বস্তু কেন মাটিতে পতিত হয় তার ব্যাখ্যাও কেপলারের সূত্র" থেকে পাওয়া যায় না। এ সকল প্রশ্নের ব্যাখ্যা পাওয়া যায় 1687 খ্রিস্টাব্দে স্যার আইজ্যাক নিউটনের 'ফিলোসোফিয়া ন্যাচারালাস প্রিন্সিপিয়া ম্যাথমেটিকস' (Philosophiae Naturalis Principia Mathematics) গ্রন্থটি প্রকাশিত হওয়ার পর। এই বইয়ে বস্তুপিণ্ডগুলো কী করে চলাচল করে, গাণিতিক বিশ্লেষণসহ তার তত্ত্ব প্রকাশ করেন। এ ছাড়াও তিনি মহাকর্ষীয় বিধি উপস্থাপন করেন। তিনি দেখিয়েছিলেন যে উপবৃত্তাকার কক্ষে চন্দ্রের পৃথিবী প্রদক্ষিণ করার এবং সূর্যের চারদিকে গ্রহগুলোর উপবৃত্তাকার পথে ভ্রমণের কারণও এই মহাকর্ষ।
আলোকবিদ্যা ও গণিতেও নিউটনের অবদান অপরিসীম। তিনি ক্যালকুলাস আবিষ্কার করেন। তিনি আলোর কণিকা তত্ত্বের প্রবক্তা। এই তত্ত্ব অনুযায়ী যেকোনো দীপ্ত বস্তু (Luminous body) হতে অনবরত অসংখ্য ক্ষুদ্র কণিকা ঝাঁকে ঝাঁকে নির্গত হয়। এই কণিকা তত্ত্বের সাহায্যে তিনি আলোর বিভিন্ন গুণাগুণ সম্পর্কীয় বিভিন্ন ঘটনা ব্যাখ্যা করতে সক্ষম হন। আলোর সরলপথে গমন, আলোর প্রতিফলন, প্রতিসরণ গুণাবলি এ তত্ত্বের সাহায্যে ব্যাখ্যা করা যায়। তাঁর অবদান এত সুদূরপ্রসারী যে সনাতনী পদার্থবিজ্ঞানকে নিউটনীয় পদার্থবিজ্ঞান বলে।
নিউটনের কণিকা তত্ত্ব আলোর অনেক ঘটনা ব্যাখ্যা করতে পারে। তবে আলোর ব্যতিচার, অপবর্তন, সমবর্তন ইত্যাদির কোনো সন্তোষজনক ব্যাখ্যা কণিকা তত্ত্বে পাওয়া যায় না। স্যার আইজাক নিউটনের সমসাময়িক ডাচ বিজ্ঞানী হাইগেন্স (Huygens) 1678 খ্রিস্টাব্দে আলোর তরঙ্গ তত্ত্ব প্রদান করেন। পরে টমাস ইয়ং ফেনেলসহ আরও অনেকে এ তত্ত্বকে প্রতিষ্ঠিত করেন।
টমাস ইয়ং বহুমুখী প্রতিভার অধিকারী ছিলেন। তিনি পেশায় একজন চিকিৎসক ছিলেন। বিজ্ঞানেও তাঁর অবদান অপরিসীম। তাঁর সবচেয়ে বেশি আগ্রহ ছিল আলোকবিজ্ঞানে।
1801 খ্রিস্টাব্দে তিনি আলোকের ব্যতিচার আবিষ্কার করেন। দুটি উৎস হতে সমান কম্পাঙ্ক ও বিস্তারের দুটি আলোক তরঙ্গের উপরিপাতনের ফলে কখনও কখনও খুব উজ্জ্বল এবং কখনও কখনও অন্ধকার দেখায়। আলোকের এ ঘটনাকে ব্যতিচার বলে। 1807 খ্রিস্টাব্দে বিজ্ঞানী ইয়ং আলোকের ব্যতিচার প্রদর্শনের নিমিত্তে একটিপরীক্ষা সম্পাদন করেন। তাঁর নামানুসারে এই পরীক্ষাকে ইয়ং-এর পরীক্ষা বলে। এই পরীক্ষার ফলে আলোকের তরঙ্গ তত্ত্ব সুদৃঢ় হয়। পদার্থের স্থিতিস্থাপকতার উপরও তিনি একটি সূত্র প্রদান করেন। মানব চোখে বিভিন্ন আলোর সংবেদনশীলতা সম্মন্ধে তিনি সর্বপ্রথম ব্যাখ্যা প্রদান করেন।
মাইকেল ফ্যারাডে একজন পদার্থবিদ রসায়নবিদ ছিলেন। তিনি ইংল্যান্ডের রয়েল ইনস্টিটিউটের রসায়নবিদ্যার অধ্যাপক ছিলেন। 1845 খ্রিস্টাব্দে তিনি আবিষ্কার করেন যে একটি প্রবল চৌম্বকক্ষেত্রের প্রভাবে সমবর্তন তল ঘুরে যায়। এ ঘটনা ফ্যারাডে ক্রিয়া নামে পরিচিত। এই ক্রিয়া আবিষ্কারের পর বিজ্ঞানীরা ধারণা করলেন যে আলোকের সঙ্গে চুম্বকত্বের একটি গভীর সম্পর্ক রয়েছে। পরবর্তীকালে তিনি তড়িৎ চুম্বকীয় তরঙ্গতত্ত্ব আবিষ্কার করেন।
ফ্যারাডে তড়িৎ চুম্বকীয় আবেশ এবং আপেক্ষিক আবেশিক ধারকত্ব আবিষ্কারের জন্য অমর হয়ে আছেন। 1831 খ্রিস্টাব্দে তিনি আবিষ্কার করেন যে চৌম্বকক্ষেত্র দ্বারা তড়িৎ প্রবাহ সৃষ্টি করা যায়। এর নামই তড়িৎচৌম্বক আবেশ। এ আবিষ্কারকে ভিত্তি করে জেনারেটর, চাপফরমার ও অন্যান্য বৈদ্যুতিক যন্ত্রপাতি আবিষ্কৃত হয়েছে। আধুনিক সভ্যতা বিকাশে এ সমস্ত আবিষ্কার নিঃসন্দেহে যুগান্তকারী। এছাড়াও তিনি তড়িৎ বিশ্লেষণ, তড়িৎ বিশ্লেষণের সূত্র আবিষ্কার করেন। তড়িৎ প্রলেপন, তড়িৎ মুদ্রণ, ধাতু নিষ্কাশন, ধাতু বিশুদ্ধিকরণ ইত্যাদিতে তড়িৎ বিশ্লেষণ প্রক্রিয়া ব্যবহার করা হয়।
ঊনবিংশ শতাব্দী পর্যন্ত বিজ্ঞানীদের ধারণা ছিল যে, প্রতিটি পরমাণু ধনাত্মক আধানের বস্তু দ্বারা গঠিত এবং এই ধনাত্মক আধানযুক্ত বস্তুর মাঝে ইতস্ততভাবে ঋণাত্মক আধানযুক্ত ইলেকট্রন ছড়িয়ে রয়েছে। প্রতিটি পরমাণুর মোট ধন আধান ও ঋণ আধানের পরিমাণ সমান।
1911 সালে রাদারফোর্ড বিখ্যাত আলফা বিক্ষেপণ পরীক্ষার ফলাফল হতে এই সিদ্ধান্তে উপনীত হন যে, পরমাণুর সমস্ত ধন আধান এবং ভর এর কেন্দ্রে অতি অল্প পরিসর স্থানে কেন্দ্রীভূত রয়েছে। রাদারফোর্ড একে নিউক্লিয়াস নামে অভিহিত করেন, এই নিউক্লিয়াসের চারদিকে কতকগুলো ইলেকট্রন বৃত্তাকার কক্ষপথে ঘুরছে। ইলেকট্রনগুলোর ঘূর্ণনজনিত বল ও নিউক্লিয়াস এবং ইলেকট্রনগুলোর মধ্যে ক্রিয়াশীল কুলম্বীয় বল সমান ও বিপরীতমুখী হওয়ায় ইলেকট্রন সুস্থিরভাবে নির্দিষ্ট দূরত্বে নিউক্লিয়াসকে প্রদক্ষিণ করে। পরমাণুর এই মডেলকে সৌরজগতের সাথে তুলনা করা যায়। রাদারফোর্ডের পরমাণুর এই মডেল অন্যান্য মডেলের চেয়ে অধিকতর যুক্তিসঙ্গত হলেও এর সীমাবদ্ধতা ছিল যা পরবর্তীতে নীলস বোর দূর করেন।
আজ যদি বিশ্বের যেকোনো দেশের বিজ্ঞানমনস্ক কোনো ব্যক্তিকে জিজ্ঞেস করা হয়, “বিংশ শতাব্দীর সবচেয়ে বিখ্যাত বিজ্ঞানী কে?” স্বাভাবিক উত্তর পাওয়া যাবে, “আলবার্ট আইনস্টাইন।" খুব কম সংখ্যক বিজ্ঞানাই আইনস্টাইনের মতো তাঁর মৌলিক কাজের সংখ্যা, বৈচিত্র্য এবং অপরিসীম গুরুত্ব বিবেচনায় এত বিখ্যাত হতে পেরেছেন। আইনস্টাইন তাঁর বহু বৈচিত্র্যময় বৈজ্ঞানিক আবিষ্কারের মধ্যে সবচেয়ে বেশি পরিচিত তাঁর আপেক্ষিক তত্ত্বের জন্য। আপেক্ষিক তত্ত্বের মধ্যে আপেক্ষিকতার বিশেষ তত্ত্বের জন্য তিনি সমধিক পরিচিত।
1905 সালে যখন তাঁর বয়স মাত্র 23 বছর তখন তিনি আপেক্ষিকতার বিশেষ তত্ত্ব প্রকাশ করেন। আমাদের মৌলিক চিন্তা-চেতনা বা বিশ্বাসের অনেক কিছুরই পরিবর্তন সাধন করেছে এই আপেক্ষিকতার বিশেষ তত্ত্ব। পারমাণবিক বিজ্ঞানের ক্রম বিকাশের ক্ষেত্রে আপেক্ষিক তত্ত্বের ভূমিকা অপরিসীম। আইনস্টাইনের মত অনুসারে স্থান, কাল, দৈর্ঘ্য, কোনোটিই পরম রাশি বা নিরপেক্ষ নয়। এগুলো পরিবর্তনশীল। চিরায়ত বলবিজ্ঞানে ভর এবং শক্তি স্বাধীন হলেও আপেক্ষিকতার বিশেষ তত্ত্ব অনুসারে এরা সমতুল্য (Equivalent)। এই তত্ত্ব অনুসারে আমরা জানতে পারি যে ভরসম্পন্ন কোনো বস্তুই আলোর বেগ বা তার বেশি বেগে ছুটতে পারে না, তা যত বলই বস্তুর উপর প্রয়োগ করা হোক না কেন।
আইনস্টাইনের আরেকটি অমর সৃষ্টি হচ্ছে আলোক তড়িৎ ক্রিয়া ব্যাখ্যা প্রদান। কোনো ধাতব পদার্থের উপর উপযুক্ত কম্পাঙ্ক বা তরজাদৈর্ঘ্যের আলোক আপতিত হলে ঐ পদার্থ হতে ইলেকট্রন নির্গত হয়। এই ক্রিয়াকে আলোক তড়িৎ ক্রিয়া বলে। 1905 খ্রিস্টাব্দে আলোক তড়িৎ ক্রিয়া ব্যাখ্যার জন্য আইনস্টাইন প্ল্যাঙ্কের কোয়ান্টাম তত্ত্ব প্রয়োগ করেন। কোয়ান্টাম তত্ত্ব অনুসারে যে কোনো বিকিরণ অসংখ্য ফোটনের সমষ্টি অর্থাৎ বিকিরণ ফোটনের একটি ঝাঁক বা ঝরনা। প্রতিটি ফোটনের শক্তি হচ্ছে hv। এখানে হলো প্ল্যাঙ্কের ধ্রুবক এবং হচ্ছে ফোটনের কম্পাঙ্ক। এখন একটি ফোটন কোনো ধাতব পাতের পরমাণুর উপর আপতিত হলো। ফোটনের সাথে পরমাণুর সংঘাত হবে এবংএই সংঘাত স্থিতিস্থাপক সংঘাত। এই সংঘাতের ফলে পরমাণুস্থ একটি ইলেকট্রন ফোটনের সমুদয় শক্তি গ্রহণ করবে এবং কোনো শক্তি স্থানান্তরিত হবে না। এখন ইলেকট্রনটি পরমাণুর নিউক্লিয়াসের সঙ্গে আবদ্ধ থাকায় এই শক্তির কিছু অংশ ইলেকট্রনকে নিউক্লিয়াসের আকর্ষণ হতে মুক্ত করতে ব্যয় হবে। অবশিষ্ট শক্তি নিয়ে ইলেকট্রন নির্গত হবে। এটিই আলোক তড়িৎ ক্রিয়ার ব্যাখ্যা।
বিজ্ঞানী প্ল্যাঙ্ক ছিলেন জার্মানির প্রখ্যাত পদার্থবিদ। 1900. খ্রিস্টাব্দে তিনি তেজকণাবাদ আবিষ্কার করেন। বিখ্যাত বিজ্ঞানী স্যার আইজ্যাক নিউটন এবং সমকালীন বিজ্ঞানীরা বিশ্বাস করতেন যে আলো কণা প্রকৃতির। এই তত্ত্ব অনুযায়ী যে কোনো দীত বস্তু (Luminous body) হতে অনবরত অসংখ্য ক্ষুদ্র ক্ষুদ্র কণিকা ঝাঁকে ঝাঁকে নির্গত হয়। 1802 সালে আলোকের ব্যতিচারের ক্ষেত্রে ইয়ং-এর বিচিড় পরীক্ষা প্রমাণ করে যে আলো তরঙ্গ প্রকৃতির। আলোর বিভিন্ন ঘটনা বিশ্লেষণে ও ব্যাখ্যার সাফল্য এই তত্ত্বকে প্রতিষ্ঠিত করে। ইয়ং-এর পরীক্ষার প্রায় একশ বছর পরে ম্যাক্স প্ল্যাঙ্কে কৃষ্ণ বস্তুর বিকিরণ ব্যাখ্যায় আলোকের কণাতত্ত্ব পুনর্জীবিত করেন। এই প্রবন্ধ এবং অন্যান্য বিজ্ঞানীদের পরীক্ষালব্ধ ফলাফল থেকে এই ধারণা সৃষ্টি হয় যে আলো এবং সকল ধরনের তড়িৎ চৌম্বকীয় তরাই অতি ক্ষুদ্র ক্ষুদ্র শক্তিগুচ্ছের সমন্বয়ে গঠিত।
প্ল্যাঙ্কের অভিমত অনুসারে কোনো বস্তু হতে শক্তির বিকিরণ বা বিভিন্ন ধাতুর মধ্যে শক্তির বিনিময় নিরবচ্ছিন্নভাবে ঘটে না। এই প্রক্রিয়ায় কোনো ধারাবাহিকতা নেই। শক্তির নিঃসরণ বা শোষণ বিচ্ছিন্নভাবে খন্ড খন্ড আকারে বা এক একটি গুচ্ছ বা প্যাকেটে নির্গত বা শোষিত হয়। প্রতিটি শক্তিকণা বা শক্তিগুচ্ছ এক একটি অবিভাজ্য একক। তিনি শক্তির এ ক্ষুদ্র গুচ্ছের নাম দেন কোয়ান্টা (Quanta)। প্রতিটি কোয়ান্টার শক্তি বিকিরণ কম্পাঙ্কের সমানুপাতিক। এই শক্তি কোয়ান্টা পরবর্তীতে ফোটন হিসেবে পরিচিতি লাভ করে। ফোটন বিদ্যুৎ নিরপেক্ষ এবং এর কোনো ভর নেই।
কোনো ভৌত রাশির নির্ভুল পরিমাপ পেতে রাশির সাথে সম্পর্কযুক্ত যে সূত্র থাকে তার অন্তর্গত সকল রাশির মাপ নির্ভুল হওয়া প্রয়োজন। এর ব্যত্যয় ঘটলে পরিমাপ সঠিক হবে না। একে ভুল বা ত্রুটি বলে।
যেকোনো ভৌত রাশি পরিমাপে প্রকৃত শুদ্ধ মান পাওয়া যায় না। কিছু না কিছু ত্রুটি পরিলক্ষিত হয়। এ ত্রুটির উৎস পরীক্ষণ কাজে ব্যবহৃত বস্ত্রপাতির সূক্ষ্মভাবে রাশি পরিমাপের সীমাবন্ধতা এবং যিনি পরিমাপ করছেন পাঠ গ্রহণে তার ত্রুটির কারণ। এর অর্থ হলো যেকোনো পরিমাপ্য রাশির পরিমাপে একটি অনিশ্চয়তা বিদ্যমান থাকে।
পরিমাপের ত্রুটিগুলোকে উৎপন্নের ধরন অনুযায়ী কয়েকটি ভাগে ভাগ করা যায়; যথা-
(১) যান্ত্রিক ত্রুটি (Instrumental errors)
(২) পর্যবেক্ষণমূলক বা ব্যক্তিগত ত্রুটি (Observational or personal)
(৩) এলোমেলো বা অনিয়মিত ত্রুটি (Random errors)
(৪) পুনরাবৃত্তিক বা নিয়মিত ত্রুটি (Systematic errors).
পরিমাপে যে সমস্ত যন্ত্র ব্যবহার করা হয়, সেগুলো সঠিক এবং সুবেদী না হলে কোনো ভৌত রাশির পরিমাপে ত্রুটি দেখা দেয়। একে যান্ত্রিক ত্রুটি বলে।
বিভিন্ন ধরনের যান্ত্রিক ত্রুটিগুলোর মধ্যে উল্লেখযোগ্য হলো— শূন্য ত্রুটি (zero error), পিছট ত্রুটি (backlash error) ও লেভেল ত্রুটি (level error) |
সাধারণত ভার্নিয়ার স্কেল, গজ, স্লাইড ক্যালিপার্স, ফেরোমিটার ইত্যাদির প্রধান স্কেলের '0' দাগ ভার্নিয়ার বা বৃত্তাকার স্কেলের '0' দাগের সাথে না মিলে আগে বা পিছনে থাকে। একে শূন্য ত্রুটি বলে।
নাট-স্ক্রু নীতির উপর ভিত্তি করে যে সকল যন্ত্র তৈরি সেসব যন্ত্রে এ ত্রুটি পরিলক্ষিত হয়। নতুন যন্ত্রের তুলনায় পুরাতন যন্ত্রে এ ত্রুটি বেশি দেখা যায়। কারণ অনেকদিন ব্যবহারের ফলে নাটের গর্ত বড় হয়ে যেতে পারে বা স্কু ক্ষয় হয়ে আলগা হয়ে যায়, ফলে স্কুকে উভয় দিকে ঘুরালে সমান সরণ হয় না। এ ধরনের ত্রুটিকে পিছট ত্রুটি বলে। পাঠ নেওয়ার সময় যন্ত্রকে একই দিকে ঘুরালে এ ত্রুটি দূর হয়।
কতকগুলো পরীক্ষণের ক্ষেত্রে যন্ত্রকে ভালোভাবে লেভেলিং করে না নিলে সঠিক পাঠ পাওয়া যায় না। যেমন নিক্তি, বিক্ষেপ চৌম্বকমান , ট্যানজেন্ট গ্যালভানোমিটার ইত্যাদি। লেভেলিং এবং স্পিরিট লেভেলের সাহায্যে লেভেলিং করে নিতে হয়।
পর্যবেক্ষকের পর্যবেক্ষণে ভুল এবং সঠিক মূল্যায়নের অভাবে এ ত্রুটি পরিলক্ষিত হয়। একে পর্যবেক্ষণমূলক ত্রুটি বা ব্যক্তিগত ত্রুটি বলে। দৃষ্টিভ্রষ্ট (Parallax error) এ ধরনের একটি ত্রুটি।
পর্যবেক্ষণ সতকর্তার সাথে করে এবং একাধিকবার পাঠ নিয়ে এ ত্রুটি দূর করা যায়।
জুটির বিভিন্ন বিষয়ে উপযুক্ত সাবধানতা অবলম্বন করা সত্ত্বেও কোনো একটি রাশির পাঠ বার বার ভিন্ন হতে দেখা যায়। পরিমাপে এ ধরনের ভিন্নতা বা পার্থক্য দুই ভাবে হতে পারে। যথা- (১) পর্যবেক্ষকের পর্যবেক্ষণের ত্রুটির জন্য হতে পারে কিংবা (২) পরীক্ষাকালে যন্ত্রের অবস্থার পরিবর্তনের জন্য। উদাহরণস্বরূপ, মাধ্যাকর্ষণজনিত ত্বরণ পরিমাপের ক্ষেত্রে T পরিমাপ করার জন্য থামা ঘড়ি (Stop watch) এবং L মাপার জন্য বেল এবং সূচক ব্যবহার করা হয়। T পরিমাপের জন্য যদি ঘড়িটি ঠিকমতো চালানো এবং থামানো না হয় তবে T-এর পরিমাপে ভুল হবে। L পরিমাপের সময় সূচক যদি স্কেলের একটি নির্দিষ্ট দাগের সাথে না মিলে দুইটি সন্নিহিত দাগের মধ্যে থাকে, তবে পর্যবেক্ষকের পক্ষে সূচকের অবস্থানের নির্ভুল মান স্কেল থেকে নেয়া সম্ভব হয় না। এ ধরনের ভুলগুলোকে অনিয়মিত বা এলোমেলো ত্রুটি বলে।
অনিয়মিত ত্রুটি পরিবর্তনশীল। প্রাপ্ত পাঠ প্রকৃত পাঠ অপেক্ষা বেশি হলে ধনাত্মক এবং কম হলে ঋণাত্মক হবে। এই ত্রুটি দূর করতে হলে অধিক সংখ্যক পাঠ গ্রহণ করে তাদের গড় পাঠ বের করতে হবে।
পরীক্ষাকালে কোনো কোনো ত্রুটির ফলে পরীক্ষাধীন রাশির পরীক্ষালর মান সর্বদাই এবং নিয়মিতভাবে রাশিটির প্রকৃত মান অপেক্ষা কম বা বেশি হতে পারে। এ ধরনের ত্রুটিকে নিয়মিত বা পুনরাবৃত্তিক ত্রুটি বলে। মিটার ব্রিজের প্রান্তিক ত্রুটি, পোটেনশিওমিটারের প্রান্তিক ত্রুটি, স্ক্রুগজের শূন্য ত্রুটি এই ত্রুটির অন্তর্গত।
এই ত্রুটি সংশোধনের জন্য বিভিন্ন ক্ষেত্রে বিভিন্ন অবস্থায় পরীক্ষাকার্যটি পুনরাবৃত্তি করা হয়।
অতএব, পরম ত্রুটি = প্রকৃত মান – পরিমাপ্য মান
যেকোনো পরিমাপে পরম ত্রুটির চেয়ে আপেক্ষিক ত্রুটি বা শতকরা ত্রুটি অধিক গুরুত্বপূর্ণ ।
আপেক্ষিক ত্রুটি = পরম ত্রুটি/প্রকৃত মান
বা, SA = এখানে গাণিতিক মান ৯ কে প্রকৃত মান হিসেবে ধরা হয়েছে।
শতকরা ত্রুটি প্রকাশ করা হয় নিম্নরূপে—
শতকরা ত্রুটি = x100%
অন্যভাবে বলা যায় শতকরা ত্রুটি = প্রকৃত মান - পরীক্ষালব্ধ/প্রকৃত মান x 100%
সামগ্রিক বা মোট ত্রুটি (Gross errors) : পর্যবেক্ষকের অসতর্কতা বা অমনোযোগিতার কারণে এ ত্রুটি পরিলক্ষিত হয়। সতর্কতার সঙ্গে পরীক্ষণ কর্ম সম্পাদন করে এ ত্রুটি দূর করা যায়।